Carbon-based silicon nanohybrid anode materials for rechargeable lithium ion batteries
نویسندگان
چکیده
منابع مشابه
Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries
In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...
متن کاملPreparation of Carbon Nano-Onions and Their Application as Anode Materials for Rechargeable Lithium-Ion Batteries
Carbon nano-onions (CNOs), which consist of concentric graphitic shells, represent another new allotropic nanophase of carbon materials. CNOs have already been shown to offer a variety of potential applications such as solid lubrication, electromagnetic shielding, fuel cells, heterogeneous catalysis, gas and energy storage, and electro-optical devices owing to their outstanding chemical and phy...
متن کاملPorous Si anode materials for lithium rechargeable batteries
Si anode materials for lithium rechargeable batteries have received much attention due to their high capacity. The Si itself can alloy with lithium up to Li4.4Si, corresponding to 4212 mAh/ g (4.4Li + Si 4 Li4.4Si). However, the large volume expansion of over 300% due to the formation of various LixSiy phases generates enormous mechanical stress within the ionic character material, which become...
متن کاملNiSb alloy hollow nanospheres as anode materials for rechargeable lithium ion batteries.
NiSb alloy hollow nanospheres (HNSs) obtained by galvanic replacement were firstly applied as anode materials for lithium ion batteries, giving the best electrochemical performances for NiSb alloy materials so far with a high reversible capacity of 420 mA h g(-1) after 50 cycles, close to its theoretical capacity (446 mA h g(-1)).
متن کاملPeriodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.
Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanosphere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Technology
سال: 2016
ISSN: 1066-7857,1753-5557
DOI: 10.1080/10667857.2015.1104824